Harmonic Oscillator in Two Dimensions

By
Dr. Mohammed F. Al-Mudhaffer
Department of Physics-College of Education for Pure Science

Outlines:

Example 2 and 3

4.3.1 Harmonic Oscillator in Two Dimensions

Example (2) Suppose a particle of mass m is moving in the above force field, and at time $t=0$ the particle passes through the origin with speed v_{0}. What will the speed of the particle be at some small distance away from the origin given by $r=\Delta e_{r}$, where $\Delta \ll \delta$?

Solution:

$$
V(\mathbf{r})=V_{0}-\frac{1}{2} k \delta^{2} e^{-r^{2} / \delta^{2}}
$$

餚 force is conservative because there is a potential
I energy exist .

$$
F=-\nabla V
$$

Thus , the total energy given by:

$$
\begin{equation*}
E=T+V=E=\frac{1}{2} m v^{2}+V(r)=\frac{1}{2} m v_{\circ}^{2}+V(0) \tag{4.27}
\end{equation*}
$$

I By solving equation 4.27 we obtain I

$$
\begin{equation*}
v^{2}-v_{\circ}^{2}=\frac{2}{m}[V(0)-V(r)] \tag{4.28}
\end{equation*}
$$

From example (1), we have $V(r)$ defines as following :

$$
\begin{array}{r}
V(r)=V_{\circ}-\frac{1}{2} k \delta^{2} e^{\frac{-\Delta^{2}}{\delta^{2}}} \\
V(0)=V_{\circ}-\frac{1}{2} k \delta^{2} \tag{4.29}
\end{array}
$$

Now, we can substitute equation (4.29) in (4.28) to get:

$$
\begin{array}{r}
v^{2}=v_{\circ}^{2}+\frac{2}{m}\left[\left(\circ-\frac{1}{2} k \delta^{2}\right)-\left(V / \circ-\frac{1}{2} k \delta^{2} e^{\frac{-\Delta^{2}}{\delta^{2}}}\right)\right] \\
v^{2}=v_{\circ}^{2}-\frac{k \delta^{2}}{m}\left[1-e^{\frac{-\Delta^{2}}{\delta^{2}}}\right] \tag{4.30}
\end{array}
$$

But $\Delta \leq<\delta \Rightarrow e^{\frac{-\Delta^{2}}{\delta^{2}}}=\left(1-\frac{\Delta^{2}}{\delta^{2}}\right)$

$$
\begin{equation*}
v^{2}=v_{\circ}^{2}-\frac{k \delta^{2}}{m}\left[1-\left(1-\frac{\Delta^{2}}{\delta^{2}}\right)\right] \tag{4.31}
\end{equation*}
$$

$$
\begin{equation*}
v^{2}=v_{\circ}^{2}-\frac{k \Delta^{2}}{m} \tag{4.32}
\end{equation*}
$$

Example (3)

Is the force field $F=i x y+j x z+k y z$ conservative?

Solution:

$$
\text { If } F=-\nabla V
$$

$\operatorname{Curl} \mathbf{F}=\nabla \times F=\left|\begin{array}{ccc}i & j & k \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_{x} & F_{y} & F_{z}\end{array}\right|=0 \quad \Rightarrow \cdots \cdots \Rightarrow \begin{aligned} & \text { This is a condition of } \\ & \text { conservative force }\end{aligned}$
$\begin{array}{ll}\square & \square \\ \square & \square \\ \square & \square\end{array}$
$\boldsymbol{\nabla} \times \mathbf{F}=\left|\begin{array}{ccc}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ \partial / \partial x & \partial \partial y & \partial \partial z \\ x y & x z & y z\end{array}\right|=\mathbf{i}(z-x)+\mathbf{j} 0+\mathbf{k}(z-x)$

Example (4) For what values of the constants a, b, and c is the force $F=i(a x+b y 2)+j c x y$ conservative?

Solution: H.W

4.3.1 Harmonic Oscillator in Two Dimensions

$$
F=-k r
$$

Accordingly, the deferential equation of motion is simply expressed as

$$
m \frac{d^{2} r}{d t^{2}}=-k r
$$

In the case of motion in a 2D plane, equation of motion is equivalent to the two component equations

$$
\begin{align*}
m \ddot{x} & =-k x \tag{4.35}\\
m \ddot{y} & =-k y
\end{align*}
$$

$$
\begin{align*}
& m \ddot{x}=-k x \tag{4.35}\\
& m \ddot{y}=-k y
\end{align*}
$$

$$
\begin{align*}
& x=A \cos (\omega t+\alpha) \tag{4.36}\\
& y=B \cos (\omega t+\beta)
\end{align*}
$$

$$
\text { As } \omega=\sqrt{k / m}
$$

The constants of integration A, B, α and β are determined from the initial conditions in any given case. To find the equation of the path, we eliminate the time t between the two equations. To do this, let us write the second equation in the form

$$
\begin{equation*}
y=B \cos (w t+\alpha+\Delta) \text { as } \beta=\alpha+\Delta \tag{4.38}
\end{equation*}
$$

$$
\begin{gather*}
y=B[\cos (w t+\alpha) \cos (\Delta)-\sin (w t+\alpha) \sin (\Delta)] \\
\frac{y}{B}=\cos (w t+\alpha) \cos (\Delta)-\sin (w t+\alpha) \sin (\Delta) \tag{4.39}
\end{gather*}
$$

But from equation (4.36) we have

$$
\begin{equation*}
x=A \cos (w t+\alpha) \Rightarrow \frac{x}{A}=\cos (w t+\alpha) \text { and } \sin \theta=\left[1-\cos ^{2} \theta\right]^{\frac{1}{2}} \tag{4.40}
\end{equation*}
$$

so that, equation (4.39) can be written as following:
$\left.\frac{y}{B}=\frac{x}{A} \cos (\Delta)-\left[1-\frac{x^{2}}{A^{2}}\right]^{\frac{1}{2}} \sin (\Delta)\right] \quad(4.41) \quad \frac{x}{A}=\cos (w t+\alpha)$ and $\sin \theta=\left[1-\cos ^{2} \theta\right]^{\frac{1}{2}}$
$\frac{x}{A} \cos (\Delta)-\frac{y}{B}=\left[1-\frac{x^{2}}{A^{2}}{ }^{\frac{1}{2}} \sin (\Delta)\right.$
By squaring the two sides and re-range the terms so equation (4.42) becomes:

$$
\begin{equation*}
\frac{x^{2}}{A^{2}} \cos ^{2}(\Delta)+\frac{x^{2}}{A^{2}} \sin ^{2}(\Delta)+\frac{y^{2}}{B^{2}}-\frac{2 x y}{A B} \cos \Delta=\sin ^{2}(\Delta) \tag{4.43}
\end{equation*}
$$

eliminate $\left(\sin ^{2}+\cos ^{2}\right)=1$ from the above equation so we will get

$$
\begin{equation*}
\frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}-\frac{x y}{A B} \cos \Delta=\sin ^{2}(\Delta) \tag{4.44}
\end{equation*}
$$

which is a quadratic equation in x and y , from equation (4.44) if the phase $\Delta=\frac{\pi}{2}$. So

$$
\begin{equation*}
\frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}=1 \tag{4.45}
\end{equation*}
$$

Equation (4.45) is the equation of ellipse whose axis coincide with the coordinates axes.

If $\Delta=0$ then, equation (4.44) becomes:

$$
\begin{equation*}
\frac{x^{2}}{A^{2}}+\frac{y^{2}}{B^{2}}-\frac{2 x y}{A B}=0 \tag{4.46}
\end{equation*}
$$

$$
\begin{equation*}
y=\frac{B}{A} x \tag{4.47}
\end{equation*}
$$

OR if $\Delta=\pi$

$$
\begin{equation*}
y=-\frac{B}{A} x \tag{4.48}
\end{equation*}
$$

If the phase difference is 0 or π then the equation of the path reduces to that of a straight line

In the general case it is possible to show that the axis of the elliptical path is inclined to the x -axis by the angle Ψ where :

$$
\begin{equation*}
\tan 2 \psi=\frac{2 A B \cos (\Delta)}{A^{2}-B^{2}} \tag{4.49}
\end{equation*}
$$

Q1=find the force if the force field given as

$$
\begin{aligned}
& 1-V=c x y z+c \\
& 2-V=a x^{2}+B y^{2}+c z^{2}
\end{aligned}
$$

